УНИВЕРСАЛЬНЫЙ ИЗМЕРИТЕЛЬ-РЕГУЛЯТОР

ARCOM-D49-T

Паспорт Руководство по эксплуатации версия х.х от 14.12.07

2007 г.

СОДЕРЖАНИЕ

		стр
1.	НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
3.	ВНЕШНИЙ ВИД И ОРГАНЫ УПРАВЛЕНИЯ	5
4.	МОНТАЖ ПРИБОРА	6
5.	ПОДКЛЮЧЕНИЕ ПРИБОРА	
6.	ОПИСАНИЕ РЕЖИМОВ РАБОТЫ	
7.	ПРОГРАММИРУЕМЫЕ ПАРАМЕТРЫ	
8.	ОПИСАНИЕ ФУНКЦИЙ ПРИБОРА1	11
8	.1 Ограничение прав доступа (<i>LCK</i>)1 .2 Автонастройка PID-регулятора (<i>AT</i>)1 .3 Пример составления программы регулирования1	2
9.	СООБЩЕНИЯ ОБ ОШИБКАХ1	3
10.	ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО КАНАЛА	13
11.	СХЕМЫ СОЕДИНЕНИЙ1	14
12.	СХЕМА УСЛОВНОГО ОБОЗНАЧЕНИЯ	15
13.	СВИДЕТЕЛЬСТВО О ПРИЁМКЕ1	15
14.	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	16
15.	ОБРАТНАЯ СВЯЗЬ	16

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Программный измеритель-ПИД-регулятор «ARCOM» (далее прибор) предназначен для измерения и контроля следующих видов сигналов от объекта контроля: сигналов от термопреобразователей сопротивления и термоэлектрических преобразователей.

Прибор может использоваться в различных системах измерения и контроля параметров технологических процессов, сбора, визуализации, обработки и оценки данных измерений, сигнализации об их состоянии относительно заданных значений.

Прибор обеспечивает различные способы управления объектом: позиционный (ON/OFF) и ПИД (с функцией автонастройки), с возможностью составления программы регулирования по времени (до 32 шагов). Также имеется возможность выбора различных режимов работы дополнительных сигнальных реле.

Прибор выполнен в пластиковом корпусе и может устанавливаться в щитах и пультах управления под любым углом к горизонту.

Внутри корпуса прибора установлены печатные платы, на которых смонтированы элементы электрической схемы. На задней стороне корпуса расположены клеммные соединители, посредством которых осуществляются все коммутации.

Прибор обеспечивает цифровую индикацию измеряемой величины, с плавающей десятичной точкой.

Настройка прибора осуществляется посредством кнопок управления с лицевой панели.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики. Таблица 2.1

Параметр	Значение
Входные сигналы	Термопары типов К (ТХА), L(ТХК), термосопротивления pt100(W100=1.385) и Cu50 (50M, W100=1.428)
Основная приведённая погрешность измер.	± 0,5 %
Выходные каналы	1(2) реле ~250B,5A; ~125B,6A; при cos φ = 1
Сигнализационные реле (не основные)	2 реле ~250В,5А; ~125В,6А; при соѕ φ = 1
Габаритные размеры (В х Ш х Г)	48х96х100 мм
Условия	Температура: (5-50) °C
эксплуатации	Относительная влажность воздуха: (45-85)%
Питание	~(100-240) В, (50-60) Гц
Потребляемая мощность	≤ 4 BA

3. ВНЕШНИЙ ВИД И ОРГАНЫ УПРАВЛЕНИЯ

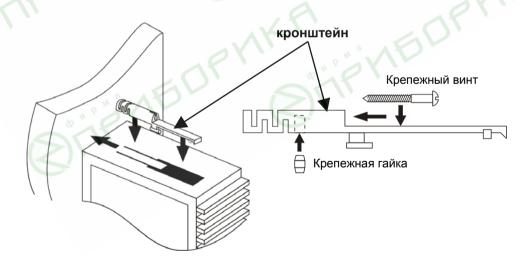
Внешний вид прибора представлен на рисунке 3.1

Передняя панель прибора Рис. 3.1

На передней панели прибора расположены:

- Индикатор PV основной индикатор, в рабочем режиме отображает текущее значение измеряемого параметра (тепературу), а в режиме программирования название редактируемого параметра;
- Индикатор SV дополнительный индикатор, в рабочем режиме отображает уставку на текущем шаге регулирования, а также, по требованию состояние программы (Hold, Rest) или номер текущего шага регулирования, а в режиме программирования значение редактируемого параметра;
- АТ индикатор режима автонастройки;
- OUT1 индикатор состояния выходного реле 1;
- OUT2 индикатор состояния выходного реле 2 (опция);
- AL1 индикатор состояния сигнального реле 1;
- AL2 индикатор состояния сигнального реле 2;
- Кнопка SET запоминание текущего значения параметра и переход к следующему;
- **Кнопка** ≪ выбор редактируемого разряда, также используется для запуска и останова (RUN/Hold) программы регулирования (для этого кнопку следует нажать и удерживать в течение 3х сек);
- **Кнопка** У уменьшение параметра, также используется для вывода прибора в режим «ПАУЗА» («Rest»)
- увеличение параметра, также используется для вывода на дисплей номера текущего шага программы (при удержании более 3x сек.)

4. МОНТАЖ ПРИБОРА


При выборе места для установки старайтесь оградить прибор от вредных воздействий окружающей среды, которыми являются:

- Сильное электромагнитное поле;
- Поле статического электричества;
- Сильная вибрация и удары по корпусу;
- Прямое воздействия солнечных лучей;
- Попадание внутрь жидкостей, химикатов, пара, едких или горючих газов;
- Воздействия сильных воздушных потоков;

Для установки прибора в щит или пульт управления, используйте крепёж, входящий в комплект поставки прибора: кронштейны, винты и гайки (по 2 шт. каждого элемента);

Вставьте кронштейн в соответствующий ему паз на корпусе прибора и сдвиньте вперед до полной фиксации. (см. *puc.4.1*)

Крепление прибора может быть усилено винтами. Для этого вставьте гайку в кронштейн и закрепите прибор с помощью винтов.

Установка прибора Рис. 4.1

5. ПОДКЛЮЧЕНИЕ ПРИБОРА

Подключение термопар к прибору следует производить соответствующим компенсационным проводом.

Термопреобразователи сопротивления подключаются к прибору по трехпроводной схеме, при этом сечение всех проводов должно быть одинаковым.

При прокладке измерительных, информационных линий, а также линий питания, убедитесь в отсутствии промышленных помех от силового оборудования. В том случае, если избежать этого невозможно, следует экранировать все линии идущие к прибору.

Не допускается прокладка измерительных линий рядом с силовыми кабелями, и тем более в одном экране.

Экран должен быть заземлен в одной точке на стороне приёмника информации (у прибора). Старайтесь максимально уменьшить длину неэкранированного участка линии. Запрещается устанавливать предохранители и переключатели на экран.

Поскольку прибор предназначен для установки в щит и его потребляемая мощность менее 20 Вт, то он не оборудован собственным выключателем питания и предохранителем. Внешний выключатель и предохранитель должны располагаться в электрическом щите или пульте управления.

Примерно через 5 секунд после включения прибор готов к работе.

6. ОПИСАНИЕ РЕЖИМОВ РАБОТЫ

При включении на индикаторах прибора кратковременно демонстрируются установленный тип входного датчика и диапазон измерений.

Если в течение 1 мин. в любом из режимов работы не производятся операции с кнопками, прибор автоматически возвращается в основной режим работы.

Основной режим

Прибор начинает работать в основном режиме с момента включения питания. По умолчанию, прибор находится в состоянии «Rest» (пауза), для запуска/останова регулирования следует нажать кнопку≪. На основном индикаторе отображается текущее значение измеряемой величины, а на дополнительном индикаторе — значение уставки.

Режим настройки

В этом режиме происходит задание и запись в память прибора различных параметров.

Для входа в этот нажмите и удерживайте кнопку SET более 3 секунд.

Для перехода к следующему редактируемому параметру нажимайте кнопку SET кратковременно.

7. ПРОГРАММИРУЕМЫЕ ПАРАМЕТРЫ

Все программируемые параметры прибора разделены на так называемые уровни. Всего существует 2 уровня программирования.

Для перехода к настройкам параметров 1 уровня нажмите и удерживайте кнопку SET более 3 секунд.

Программируемые параметры уровня 1. Таблица 7.1

Параметр и его описание	Диапазон значений	Вид дисплея
AL1: Уставка сигнального реле 1. *Логика срабатывания реле задается параметром SL4 (уровень 2).	Во всём диапазоне измерений. По умолчанию: <i>0010</i> .	PV RL/ SV QU IU
AL2: Уставка сигнального реле 2. *Логика срабатывания реле задается параметром SL5 (уровень 2).	Во всём диапазоне измерений. По умолчанию: <i>0010</i> .	PV RLZ' SV (III III
ATU: <u>Автонастройка PID -</u> <u>регулятора.</u>	0000 – выключена; 0001 – включена; По умолчанию: 0000.	PV
Р: <u>Зона пропорциональности PI,</u> <u>PD, PID регулятора.</u>	0-9999.9 По умолчанию: <i>0030</i> . При <i>0000</i> режим управления ON/OFF.	PV [7] SV [7]
<i>I:</i> Время интегрирования PI,PID регулятора Устраняет установившуюся (статическую) ошибку при выходе на уставку.	0–3600 сек По умолчанию: <i>0240.</i> При <i>0000</i> режим управления – PD.	PV /
D: Время дифференцирования PID, PD регулятора. Используется для уменьшения динамического отклонения от уставки и повышения стабильности регулятора.	0–3600 сек По умолчанию <i>0060.</i> При <i>0000</i> режим управления – PI.	PV
Т: Период следования выходных импульсов PID регулятора (период ШИМ).	1–100 сек По умолчанию <i>0020</i> .	SV DOZO
НУ: Зона нечувствительности (гистерезис) основного выхода.	0.1 – 100.0 По умолчанию <i>001.0</i>	SV ODLO

(задается только для позиционного (on/off) режима регулирования)		
Sc: Коррекция погрешности измерений. Коррекция осуществляется смещением на заданную величину	-100.0-0-100.0 По умолчанию <i>000.0</i> .	PV 5 <i>E</i> sv <i>D000</i>
Lck : <u>Ограничение прав доступа к</u> параметрам	Доступно: 0000 –всё; 0001 –только SV 0002 -ничего	PV Lc'
PrT: Поведение прибора после включения питания.	0000 — прибор переходит в начало программы (к 1му шагу) и ожидает нажатия ≪ для старта программы 0001 — прибор автоматически продолжает регулирование с прерванного шага программы По умолчанию 0000.	PV Pri sv gggg
РТ1: Длительность 1го шага SP1: Уставка 1го шага РТ32: Длительность 32го шага SP32: Уставка 32го шага	Длительность каждого шага задается в минутах (19999 минут) Уставки – в °С. (*общее количество шагов программы задается параметром SL9 на уровне 2)	PV

Для перехода к настройкам параметров 2 уровня необходимо одновременно нажать и удерживать около 3х секунд кнопки **SET**, **У** и **೧**.

Программируемые параметры уровня 2. Таблица 7.2

Описание параметра	Диапазон значений	Вид дисплея
SL0: не используется		PV SLO sv 0000
SL1: <u>Установка</u> десятичной точки	0000 - (по умолчанию) или 000.0	PV SL/ sv DOOD
SL2: Нижняя граница диапазона измерений	0000 - (по умолчанию)	PV <u>SL2</u> sv <u>0000</u>
SL3: Верхняя граница диапазона измерений	Задается в зависимости от типа входного датчика	PV <u>SL3</u> sv <u>0400</u>
Функции сигнальных реле. SL4: для реле AL1, SL5: для реле AL2.	0000 – реле отключено 0001 - включено, если PV > AL 0002 - включено, если PV < AL 0003 – включено, если PV > (SV+AL) (по умолчанию) 0004 – включено, если PV < (SV+AL) (*PV – измеренное значение температуры)	PV SLY sv 0003 u PV SLS sv 0000
SL6: <u>Гистерезис (зона</u> нечувствительности) для сигнальных реле AL1 и AL2.	0005 - по умолчанию	PV SLE SV DOOD
SL7 : Тип управления	0000 – ПИД для нагрева (по умолчанию) 0001 – ПИД для охлаждения 0002 – позиционный (ON/OFF) для нагрева	PV 5L7 sv 0000

SL8: <u>Температура</u> автонастройки	Температура, на которой производится автонастройка параметров ПИДрегулирования прибора. Значение задается в процентах от уставки (SV). О100 – по умолчанию 100%	PV 518 sv 0 100
SL9: <u>Количество</u> шагов в программе	00010032	PV 519 sv 0032
SLA: Выбор шага начала программы	Задает номер шага, с которого начнется выполнение программы после включения питания. 0000 – по умолчанию.	PV 518 sv 1000
SLb: не используется	S)	PV <u>SLB</u>

8. ОПИСАНИЕ ФУНКЦИЙ ПРИБОРА

Перед включением убедитесь в правильности установки и подключения прибора, а также проверьте значение уставки и других параметров.

Так как прибор не оборудован встроенным выключателем, он готов к работе сразу после подачи питания.

По умолчанию прибор находится в состоянии Hold (управление отключено, прибор ожидает запуска программы регулирования).

Если было отключено питание, то после повторного включения прибор будет находиться в том же режиме, в котором был на момент выключения, либо в режиме ожидания — в зависимости от того, как он был запрограммирован.

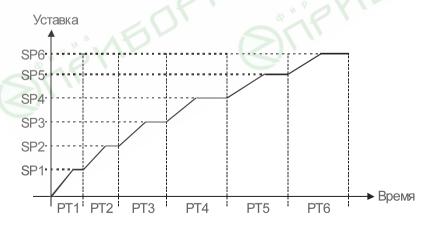
8.1. Ограничение прав доступа к параметрам (LCK)

Функция ограничения прав доступа используется для предотвращения неправильной работы прибора на случай недозволенного или ошибочного изменения редко настраиваемых параметров.

Всего существует 3 варианта ограничений, в соответствии с которыми блокируются определённые параметры. Значения заблокированных параметров можно просматривать, но не изменять.

8.2 Автонастройка PID-регулятора (*AT*)

Автонастройка предназначена для автоматического определения оптимальных значений коэффициентов PID-регулирования. Эта функция активируется после включения, во время набора температуры.


Для включения автонастройки, выполните настройку основных параметров прибора, за исключением констант PID-регулятора.

Автонастройка прекращается в следующих случаях:

- Произведено изменение уставки;
- Функция RUN/STOP переведена в положение STOP;
- Измеренное значение вышло за пределы диапазона;
- При включении и выключении питания;
- При обрыве питания на время более 20 мс.

После завершения автонастройки и в случае её остановки прибор переходит в режим программного ПИД-регулирования. Если автонастройка не была успешно завершена, то параметры регулятора остаются такими, какими они были до начала автонастройки.

8.3 Пример составления программы регулирования

SP – Уставка шага

РТ – Длительность шага

ВНИМАНИЕ! После окончания программы регулирования и до перезапуска прибор будет поддерживать температуру, заданную на последнем шаге регулирования. Поэтому для гарантированной остановки регулирования после окончания программы рекомендуется задавать минимальную уставку на последнем шаге.

9. СООБЩЕНИЯ ОБ ОШИБКАХ

В случае возникновения ошибок прибор будет сигнализировать о них сообщениями на основном индикаторе, согласно таблице 9.1.

Сообщения об ошибках. Таблица 9.1

Сообщение об ошибке	Расшифровка сообщения	Предпринимаемые действия
Err	Внутренняя ошибка	Обратитесь в сервисную службу.
0000	Выход за диапазон	Обесточьте прибор.
	измерения сверху	Проверьте исправность датчика и
uuuu	Выход за диапазон	соединительного провода.
/.()	измерения снизу	Проверьте правильность
1 150		настройки изм. входа прибора.
		Если не помогло, обратитесь в
		сервисную службу.

10. ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО КАНАЛА

Характеристики измерительного канала при подключении унифицированных сигналов напряжения (тока с внешним шунтом 250 Ом), термопар и термосопротивлений представлены в таблицах 10.1-10.2 соответственно.

Характеристики измерительного канала. Таблица 10.1


Тип датч	ика ТП	Диапазон	Разрешающая	Предел допускаемой
ПО)	измерений	способность	основной абсолютной
FOCT P 8.5	585-2001	температуры,	измеритель-	погрешности
		°C	ного канала,	измерения
			°C	температуры с учётом
				погрешности
				компенсатора
				температуры
				холодного спая,°С
L	TXK	0-750	0.8	±5
K	TXA	0-1370	1,37	±6,85

Характеристики измерительного канала. Таблица 10.2

	Тип датчика ТС		Разрешающая	Предел
по ГОСТ 66	51-94	измерений	способность	допускаемой
		температуры	измерительного	основной
		, °C	канала, °С	абсолютной
				погрешности
				измерения
				температуры, °С
W ₁₀₀ =1,426	Cu50	-50-0-150	0,20	±1
W ₁₀₀ =1,385	Pt100	-200-0-650	0,85	±2,5

11. СХЕМЫ СОЕДИНЕНИЙ

На рисунках 11.1-11.2 представлено расположение клеммных колодок приборов для различных исполнений корпусов, а также схемы внешних соединений прибора.

Схемы подключения прибора в корпусе 48х96 мм Рис. 11.4

12	11	10	9	8	7	6	5	4	3	2	1
24	23	22	21	20	19	18	17	16	15	14	13
Ë											

Расположение клемм прибора в корпусе 48х96 мм Рис. 11.1

12. СХЕМА УСЛОВНОГО ОБОЗНАЧЕНИЯ

Схема условного обозначения прибора при оформлении заказа:

ARCOM - D49T - X1 - X2(X3)

X1 ·	- тип подключаемого	датчика измерит	гельного кан	нала (каналог	в):
	ТП(х) – термопара ти	ипа- х (K,L);			

TC(x) – термосопротивление типа-**x** (Pt100, Cu50);

X2(X3) — тип выходных устройств: основного (X2) и дополнительных сигнализационных (X3) каналов:

RL- реле;

SSR – управление твердотельным реле;

SCR- управление симистором;

13. СВИДЕТЕЛЬСТВО О ПРИЁМКЕ

Прибор «ARCOM-	» заводской
номер № характеристикам настоящего эксплуатации.	соответствует техническим паспорта и признан годным п
Дата выпуска	
Представитель ОТК	М.П.
Дата продажи	

14. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие прибора требованиям раздела 2 настоящего паспорта при соблюдении потребителем условий эксплуатации, хранения и транспортирования.

Гарантийный срок эксплуатации 12 месяцев со дня ввода приборов в эксплуатацию.