ОВЕН ДТП

EAC

Преобразователи термоэлектрические

STRIPHEDRIKE OF THE DRIKE

руководство по эксплуатации

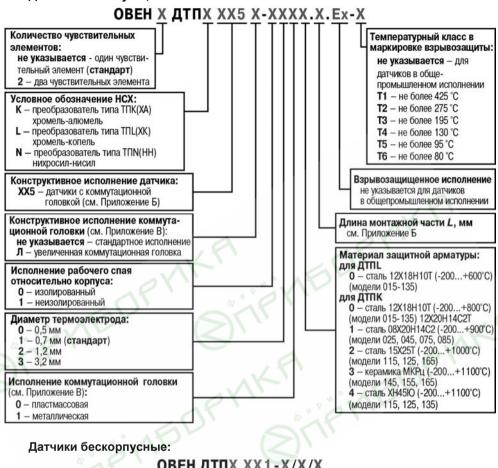
Содержание

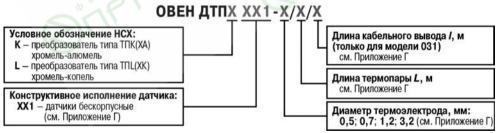
	Введение	
1	Назначение и область применения5	
2	Технические характеристики и условия эксплуатации	
	2.1 Технические характеристики6	
	2.2 Условия эксплуатации9	
3	Устройство и работа9	
4	Меры безопасности10	
5	Использование по назначению10	
	5.1 Эксплуатационные ограничения10	
	5.2 Подготовка изделия к использованию10	
	5.3 Использование изделия	
	5.4 Обеспечение взрывозащиты12	
6	Техническое обслуживание13	
	Транспортирование и хранение13	
	Маркировка14	
	Комплектность14	
•	0 Гарантийные обязательства14	
	U Tapantiunible 0033atejibciba14	
10		
1(П	іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15	
1(П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной	
1(П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой18	
1(П П ГС	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	
1(П П П	Іриложение А. Конструктивные исполнения датчиков с кабельным выводом 15 Іриложение Б. Конструктивные исполнения датчиков с коммутационной оловкой	

Введение

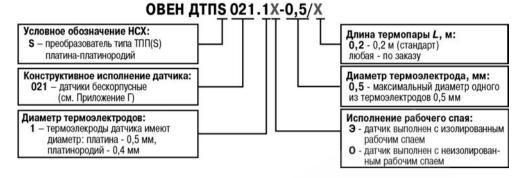
Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, принципом действия, эксплуатацией и техническим обслуживанием преобразователей термоэлектрических ОВЕН ДТП (в дальнейшем – «датчики») с термопарами в качестве термочувствительных элементов.

Датчики выпускаются согласно ТУ 4211-022-46526536-2009.


Датчики изготавливаются в различных исполнениях, отличающихся друг от друга конструктивным исполнением, типом НСХ, количеством чувствительных элементов в корпусе, диапазоном измеряемых температур, способом контакта с измеряемой общепромышленном средой. Датчики выпускаются исполнении взрывозашишенном исполнении С взрывозащитой «искробезопасная вида электрическая цепь» (i), уровнем взрывозащищенности «особо взрывобезопасный» (a) категории IIC.


Датчики изготавливаются бескорпусными, с кабельным выводом или с коммутационной головкой.

Информация об исполнениях датчиков содержится в структурах их условных обозначений, приведенных ниже.


Датчики с кабельным выводом: **ОВЕН X ДТПX XX4-XX.X/X.Ex-X** Количество чувствительных Температурный класс элементов: в маркировке взрывозащиты: не указывается - один чувствине указывается - для датчиков тельный элемент (стандарт) в общепромышленном 2 — два чувствительных элемента исполнении T1 — не более 425 °C Условное обозначение НСХ: Т2 - не более 275 °C К – преобразователь типа ТПК(ХА) Т3 - не более 195 °С хромель-алюмель T4 - не более 130 °C L — преобразователь типа ТПL(XK) Т5 - не более 95 °С хромель-копель T6 - не более 80 °C N — преобразователь типа ТПN(НН) нихросил-нисил Взрывозащищенное исполнение не указывается для датчиков Конструктивное исполнение датчика: в общепромышленном исполнении XX4 — датчики с кабельным выводом (см. Приложение А) Длина кабельного вывода I, м: Исполнение рабочего спая не указывается - 0,2 м (стандарт) относительно корпуса: **0,3-2** — длина от 0,3 до 2 м 0 - изолированный (по заказу) 1 — неизолированный Длина монтажной части L, мм Диметр термоэлектрода: см. Приложение А 0 — 0,5 мм (стандарт) $1 - 0.7 \, \text{MM}$

Датчики с коммутационной головкой:

Датчики бескорпусные высокотемпературные:

Пример обозначения при заказе:

ОВЕН ДТПК045-0111.120

Это означает, что к изготовлению и поставке подлежит преобразователь термоэлектрический с одним чувствительным элементом – термопара «хромельалюмель», материал защитной арматуры – сталь 08X20H14C2 с диапазоном измерения температуры от минус 200 до +900 °C, с изолированным рабочим спаем, диаметром термоэлектрода 0,7 мм, с металлической коммутационной головкой, длиной монтажной части 120 мм, в корпусе 045.

Подробную информацию о возможных исполнениях датчиков можно получить на официальном сайте фирмы www.owen.ru.

Используемые аббревиатуры

НСХ – номинальная статическая характеристика;

ЧЭ – чувствительный элемент (термопреобразователя);

ТУ – технические условия.

ЭДС – электродвижущая сила.

1 Назначение и область применения

Датчики ДТП предназначены для непрерывного измерения температуры жидких, паро- и газообразных сред, сыпучих материалов и твердых тел в различных отраслях промышленности.

При эксплуатации датчиков во взрывоопасных зонах необходимо использовать взрывозащищенное конструктивное исполнение (в обозначении добавляется Ex).

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

2.1.1 Основные технические характеристики датчиков типа ДТПХ XX4 приведены в таблице 2.1 и датчиков типа ДТПХ XX5 – в таблице 2.2.

Таблица 2.1 – Технические характеристики ДТПХ ХХ4

Характеристика	Значение			
Характеристика	дтпк хх4	ДТПL XX4	ДТПИ ХХ4	
Номинальная статическая характеристика (HCX)	K(TXA)	L(TXK)	N(THH)	
Рабочий диапазон измеряемых температур, °C		-40+400		
Класс допуска датчика		2		
Условное давление, МПа		10		
Исполнение рабочего спая термопары, относительно корпуса датчика	изолированный; неизолированный			
Диаметр термоэлектродной проволоки, мм		0,5; 0,7		
Показатель тепловой инерции, сек, не более: - с изолированным рабочим спаем - с неизолированным рабочим спаем	20			
Сопротивление изоляции, МОм, не менее	10			
Количество ЧЭ (рабочих термопар) в изделии, шт.				
Степень защиты (по ГОСТ 14254)	IP54			
Материал защитной арматуры	сталь 12Х18Н10Т			
Применения		-		

Примечание:

Таблица 2.2 – Технические характеристики ДТПХ XX5

У арактористика	Значение		
Характеристика	ДТПК XX5 / ДТПN XX5	ДТПL XX5	
Номинальная статическая характеристика (HCX)	K(TXA) / N(THH)	L(TXK)	
Рабочий диапазон измеряемых температур, °C	-40+1100 (см. материал защитной арматуры)	-40+600	
Класс допуска датчика	2		
Условное давление, МПа	10		
Исполнение рабочего спая термопары, относительно корпуса датчика	изолированный; неизолированный		
Диаметр термоэлектродной проволоки, мм	0,7; 1,2; 3,2		
Показатель тепловой инерции, сек, не более:			
- с изолированным рабочим спаем	60		
- с неизолированным рабочим спаем	10		

 $^{^*}$ Электрическое сопротивление изоляции между цепью чувствительного элемента и металлической частью защитной арматуры преобразователей с изолированным рабочим спаем и чувствительными элементами двухканальных при температуре (25 \pm 10) °C и относительной влажности от 30 до 80 %.

Окончание таблицы 2.2

Характеристика	Значение			
Дарактеристика	ДТПК XX5 / ДТПN XX5	ДТПL XX5		
Сопротивление изоляции, МОм, не менее 100*				
Количество ЧЭ (рабочих термопар) в изделии, шт.	1; 2			
Степень защиты (по ГОСТ 14254)	IP54			
Материал защитной арматуры	сталь 12X18H10T (Tmax до +800 °C) сталь 08X20H14C2 (Tmax до +900 °C) сталь 15X25T (Tmax до +1000 °C) сталь XH45Ю (Tmax до +1100 °C**) керамика МКРц (Tmax до +1100 °C**)	сталь 12X18Н10Т		

Примечания:

Технические характеристики бескорпусных датчиков ДТПХ XX1 приведены в таблице 2.3.

Таблице 2.3 – Технические характеристики ДТПХ XX1

Характеристика	Значение				
Характеристика	Модел	пь 011	Модель 021, 031		
Номинальная статическая характеристика	K(TXA)	L(TXK)	K(TXA)	L(TXK)	
Рабочий диапазон измеряемых температур, °С	-40+300	-40+300	-40+1100	-40+600	
Класс допуска	~V\?	2	2	2	
Показатель тепловой инерции, сек, не более	181:	3 8 1 9	Y	3	
Количество ЧЭ в изделии	1		1 1		
Степень защиты (по ГОСТ 14254)	IP00		IP00		

Характеристики высокотемпературных датчиков приведены в таблице 2.4.

Таблице 2.4 – Технические характеристики ДТПS 021

Характеристика	Значение
Номинальная статическая характеристика	S(TПП)
Рабочий диапазон измеряемых температур, °C	0+1300 (кратковременно до 1600 °C)
Класс допуска	2
Показатель тепловой инерции, сек, не более	5
Количество ЧЭ в изделии	1

2.1.2 Рабочие диапазоны измеряемых температур, пределы допускаемых отклонений ТЭДС чувствительных элементов датчиков (Δt) от номинальной статической характеристики в температурном эквиваленте, в зависимости от класса допуска и типа HCX по ГОСТ Р 8.585 приведены в таблице 2.5.

^{*} Электрическое сопротивление изоляции между цепью чувствительного элемента и металлической частью защитной арматуры преобразователей с изолированным рабочим спаем и чувствительными элементами двухканальных при температуре (25 ±10) °С и относительной влажности от 30 до 80 %.

^{**} до +1200 °C при работе в кратковременном режиме.

Таблица 2.5

Обозначение типа термопары по ГОСТ Р 8.585	Класс допуска	Диапазон измерений	Пределы допускаемых отклонений ТЭДС от НСХ $\pm \Delta t$, °C			
S	2	От 0 до 600 Св. 600 до 1600	1,5 0,0025 <i>t</i>			
L	2	От – 40 до 360 Св. 360 до 800	2,5 0,7+0,005 <i>t</i>			
K, N	2	От – 40 до 333 Св. 333 до 1300	2,5 0,0075 <i>t</i>			
Примечание – t – значение измеряемой температуры ($^{\circ}$ C).						

Рабочий диапазон измеряемых температур определяется исполнением преобразователя и зависит от материала защитной арматуры.

2.1.3 Продолжительность эксплуатации термопреобразователей, у которых значение температуры рабочего диапазона не превышает 3/4 верхнего значения диапазона измеряемых температур по ГОСТ Р 8.585 не более 10000 ч.

Продолжительность эксплуатации термопреобразователей, у которых значение температуры рабочего диапазона превышает 3/4 верхнего значения диапазона измеряемых температур по ГОСТ Р 8.585 не более 100 ч.

Примечание - Максимальные температуры применения защитной арматуры из стали в течение длительного времени (до 10000 ч) в соответствии с ГОСТ 5632.

2.1.4 Взрывозащищенные датчики ДТП-Ех имеют маркировку взрывозащиты ОЕх іа IIC Т1...Т6 Ga X. Датчики ДТС-Ех относятся к электрооборудованию с взрывозащитой вида «искробезопасная электрическая цепь і», удовлетворяют требованиям ГОСТ 30852.0, ГОСТ 30852.10 и предназначены для применения во взрывоопасных зонах в соответствии с установленной маркировкой взрывозащиты.

Знак «X», следующий за маркировкой взрывозащиты, означает:

- подключение датчиков к внешним цепям должно производиться через искробезопасные барьеры с соответствующими искробезопасными параметрами, имеющими действующие сертификаты соответствия требованиям ТР ТС 012/2011;
- установка, подключение, эксплуатация, техническое обслуживание и отключение датчиков ДТС должно производиться в соответствие с технической документацией производителя;
- температурный класс в маркировке взрывозащиты датчиков выбирается из максимальной температуры окружающей среды и максимальной температуры контролируемой среды в соответствии с таблицей 2.6.

Таблица 2.6

Температурный класс в маркировке взрывозащиты	T1	T2	Т3	T4	T5	T6
Температура окружающей и контролируемой среды, °C, не более	425	275	195	130	95	80

2.1.5 Параметры искробезопасных электрических цепей для ДТП-Ех приведены в таблице 2.7.

Таблица 2.7 - Параметры искробезопасных электрических цепей

Параметр	Значение
Максимальное входное напряжение U _i , В	6,8
Максимальный входной ток I _i , мА	100
Максимальная внутренняя емкость Сі, мкФ	15
Максимальная внутренняя индуктивность L _i , мГн	0,15

2.1.6 Габаритные и установочные размеры датчиков приведены в Приложениях A, Б, B и Г.

Датчики в зависимости от исполнения бывают в гладкой защитной арматуре, с фланцем или резьбовым штуцером.

Резьбовой штуцер датчика в стандартном исполнении имеет метрическую резьбу по ГОСТ 8724.

По согласованию с потребителем допускается изготовление датчиков с резьбовыми штуцерами с трубной цилиндрической резьбой по ГОСТ 6357 и с резьбовыми штуцерами с трубной конической резьбой по ГОСТ 6211.

2.1.7 Датчики относятся к неремонтируемым и невосстанавливаемым изделиям.

2.2 Условия эксплуатации

Рабочие условия эксплуатации узлов коммутации: помещения с нерегулируемыми климатическими условиями и (или) навесы, при атмосферном давлении от 84 до 106,7 кПа, с температурой в диапазоне от минус 40 до +85 °C и относительной влажностью не более 95 % при +35 °C и более низких температурах без конденсации влаги.

3 Устройство и работа

- 3.1 Преобразователи термоэлектрические состоят из одного или двух чувствительных элементов (термопар), соединенных с коммутационной головкой или кабельным выводом и помещенных в защитную арматуру. ЧЭ в зависимости от диапазона измеряемых температур может быть: ТХА, ТХК, ТНН и ТПП.
- 3.2 Принцип действия термопар основан на возникновении термоэлектродвижущей силы (термо-ЭДС) в месте соединения двух проводников с разными термоэлектрическими свойствами. Значение термо-ЭДС зависит от разности температур двух спаев термопары. В качестве материала термоэлектродов применяются специализированные сплавы: хромель-алюмель (ТХА) и хромелькопель (ТХК). В высокотемпературных датчиках (для измерения температур до 1300 °C) применяется термопара с термоэлектродами из чистой платины и сплава платины с 10 % родия (ТПП).

Примечание — Высокотемпературные преобразователи не рекомендуется применять для измерения температур ниже +400 °C, т. к. термо-ЭДС в этой области мала и крайне нелинейна.

4 Меры безопасности

- 4.1 По способу защиты обслуживающего персонала от поражения электрическим током датчики относятся к классу III по ГОСТ 12.2.007.0.
- 4.2 При подключении и поверке датчиков необходимо соблюдать требования ГОСТ 12.3.019, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 4.3 Любые работы по подключению и техническому обслуживанию датчиков необходимо производить только на отключенном от электропитания контрольно-измерительных приборов и при полном отсутствии давления в магистралях.
- 4.4 Датчики соответствуют «Общим правилам взрывобезопасности для взрывопожарных химических, нефтехимических и нефтеперерабатывающих производств» ПБ 09-540-03, предъявляемым к искробезопасным электрическим цепям. Конструкция соответствует требованиям ГОСТ Р 51330.0 (МЭК 60079-0) и ГОСТ Р 51330.10 (МЭК 60079-11).

5 Использование по назначению

5.1 Эксплуатационные ограничения

- 5.1.1 Монтаж и эксплуатацию датчиков следует выполнять с соблюдением мер безопасности, приведенных в разделе 4.
- 5.1.2 Климатические факторы, температура, физические свойства и химическая активность измеряемой среды, давление должны соответствовать техническим характеристикам датчиков и стойкости материалов защитной арматуры к воздействию измеряемой среды.

Внимание! При эксплуатации датчики не должны подвергаться резкому нагреву или охлаждению, а также механическим ударам.

5.2 Подготовка изделия к использованию

- 5.2.1 Распаковать датчик и проверить комплектность.
- 5.2.2 Выдержать датчик после извлечения из упаковки при температуре (20 ± 10) °C и относительной влажности 30 80 % в течение 1 2 ч, с коммутационной головки датчика (при наличии) снять крышку.
- 5.2.3 Проверить отсутствие механических повреждений датчика или защитного чехла, а также целостность измерительной цепи. При наличии повреждений или отсутствии цепи датчик заменить новым.
- 5.2.4 Проверить сопротивление электрической изоляции между цепью чувствительного элемента и металлической частью защитной арматуры при испытательном напряжении 100 В постоянного тока при температуре (25 \pm 10) °C и относительной влажности от 30 до 80 %. Сопротивление электрической изоляции должно быть не менее 100 МОм.
- 5.2.5 Просушить датчик при температуре (80 ± 10) °C в течение 3 5 часов, если сопротивление изоляции окажется менее 100 МОм.
- 5.2.6 Заменить датчик новым при неудовлетворительных результатах повторной проверки.
- 5.2.7 Выполнить подключение соединительных проводов к контактам в коммутационной головке или к выводам кабеля датчика.

Схемы внутренних соединений проводников датчиков с кабельным выводом и датчиков бескорпусных приведены на рисунке 5.1

Схемы внутренних соединений проводников датчиков с коммутационной головкой приведены на рисунке 5.2

Рисунок 5.1 – Схемы внутренних соединений проводов датчиков типа ДТПХ XX4 и ДТПХ XX1

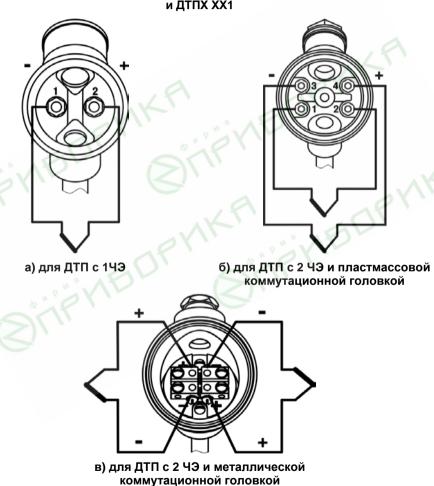


Рисунок 5.2 – Схемы внутренних соединений проводов датчиков типа ДТПХ XX5

- 5.2.8 Установить крышку в датчик с коммутационной головкой.
- 5.2.9 Установить датчик в заранее подготовленное место и подключить к вторичному прибору согласно инструкции по эксплуатации вторичного прибора.

Примечание – Подключение датчика во взрывозащищенном исполнении следует производить через барьер искрозащиты.

5.3 Использование изделия

- 5.3.1 Установка датчиков, монтаж и проверка их технического состояния при эксплуатации должны проводиться в соответствии с техническим описанием датчиков и инструкциями на оборудование, в комплекте с которым они работают.
- 5.3.2 Замена, присоединение и отсоединение датчиков от магистралей с термометрируемой средой должно проводиться при полном отсутствии давления в магистралях.

5.4 Обеспечение взрывозащиты

- 5.4.1 ДТП-Ех во взрывоопасных зонах помещений и наружных установок должны применяться в соответствии с установленной маркировкой взрывозащиты, строгим соблюдением требований ГОСТ 30852.13, действующих «Правил устройства электроустановок» (ПУЭ глава 7.3). «Правил технической эксплуатации 3.4), электроустановок потребителей» (ПТЭЭП глава других нормативных документов. регламентирующих применение электрооборудования взрывоопасных зонах.
- 5.4.2 Подключение кабеля линии связи к ДТП-Ех должно осуществляться при выключенном блоке питания.
- 5.4.3 При эксплуатации необходимо принимать меры защиты внешней части ДТП-Ех от нагрева выше температуры, допустимой для соответствующего температурного класса (см. таблицу 2.6).

Внимание! Запрещается эксплуатация датчиков с поврежденными деталями, обеспечивающими взрывозащиту. Запрещается открывать крышку датчика без снятия напряжения питания

5.4.4 Взрывозащита ДТП-Ех, относящихся к взрывозащищенному электрооборудованию с взрывозащитой вида «искробезопасная электрическая цепь «i», обеспечена соответствием преобразователей требованиям ГОСТ Р МЭК 60079-11.

Взрывозащита датчиков обеспечивается при монтаже и эксплуатации следующими средствами:

- ДТП-Ех подключаемые вторичные наобиап должны ΓOCT 30852.10, искробезопасные электрические цепи искробезопасные параметры (уровень искробезопасной цепи подгруппа электрооборудования) должны соответствовать условиям применения во взрывоопасной зоне;
- параметры искробезопасных цепей, подводимых к датчику, должны соответствовать значениям, приведенным в таблице 2.7;
- при использовании во взрывоопасной зоне проводов с многожильными проводниками, концы проводника должны быть защищены от разделения на отдельные провода с помощью наконечников или облуживания.

5.4.5 После монтажа на месте эксплуатации, крышку клеммной головки (соединительной коробки) зафиксировать от отвинчивания и несанкционированного доступа стопорным устройством или пломбированием.

6 Техническое обслуживание

6.1 Техническое обслуживание датчика при эксплуатации состоит из технического осмотра и его метрологической поверки.

При выполнении работ по техническому обслуживанию датчиков следует соблюдать меры безопасности, изложенные в п. 4.

- 6.2 Технический осмотр датчика проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя:
 - осмотр корпуса для выявления механических повреждений;
 - очистку корпуса и клемм от загрязнений и посторонних предметов;
 - проверку качества крепления датчика;
 - проверку качества подключения внешних цепей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

- 6.3 Эксплуатация датчика с повреждениями и неисправностями ЗАПРЕЩАЕТСЯ.
- 6.4 Поверка датчиков с нижним пределом диапазона измеряемых температур 0°С и с монтажной длиной не менее 250 мм проводится по ГОСТ 8.338 «Преобразователи термоэлектрические. Методика поверки».

Поверка датчиков с нижним пределом диапазона измеряемых температур минус $40\,^{\circ}$ С, с монтажной длиной менее $250\,^{\circ}$ мм проводится в соответствии с документом КУВФ. $405220.004\,^{\circ}$ МП «Преобразователи термоэлектрические ДТПLXX4, ДТПКXX4, ДТПКXX5 и ДТПLXX5. Методика поверки», утвержденным ГЦИ СИ ВНИИМС, декабрь $2004\,^{\circ}$ г.

6.5 Межповерочный интервал для термопреобразователя составляет 2 года.

7 Транспортирование и хранение

- 7.1 Условия транспортирования и хранения термопреобразователей в упаковке предприятия-изготовителя должны соответствовать условиям 6 по ГОСТ 15150.
- 7.2 Термопреобразователи транспортируются всеми видами транспорта, в закрытых транспортных средствах на любые расстояния, в соответствии с правилами перевозки грузов на транспорте данного вида.
- 7.3 Способ укладки термопреобразователей в упаковке на транспортное средство должен исключать их перемещение.
- 7.4 Допускается транспортирование термопреобразователей в контейнерах, обеспечивающих их неподвижность, без упаковки по ГОСТ 21929.
- 7.5 Термопреобразователи должны храниться в сухих закрытых помещениях, согласно условиям хранения 3 по ГОСТ 15150.

Воздух помещений не должен содержать пыли, а также агрессивных паров и газов, вызывающих коррозию.

7.6 Хранение осуществлять в складских помещениях поставщика и потребителя по ГОСТ 15150.

8 Маркировка

На датчиках или прикрепленном к нему ярлыке указаны:

- товарный знак предприятия-изготовителя;
- обозначение типа преобразователя;
- vсловное обозначение НСХ:
- рабочий диапазон измерений;
- класс допуска;
- заводской номер;
- год и месяц выпуска;
- маркировка взрывозащиты 0Ex ia IIC T1...T6 Ga X (для датчиков во взрывозащищенном исполнении).

9 Комплектность

Преобразователь − 1 шт. Паспорт − 1 экз. Руководство по эксплуатации − 1 экз.

Примечание – Изготовитель оставляет за собой право внесения дополнений в комплектность изделия. Полная комплектность указывается в паспорте на прибор.

10 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие датчиков требованиям технических условий при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации – 24 месяца со дня ввода в эксплуатацию.

Гарантийный срок хранения – три года со дня выпуска предприятиемизготовителем.

Приложение А. Конструктивные исполнения датчиков с кабельным выводом

Габаритные размеры конструктивных исполнений для датчиков с кабельным выводом приведены на рисунках А.1 - А.10 и в таблице А.1.

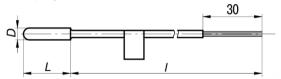


Рисунок А.1 – Конструктивное исполнение 014 и 024

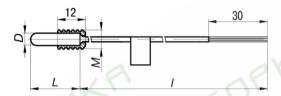


Рисунок А.2 - Конструктивное исполнение 034 и 044

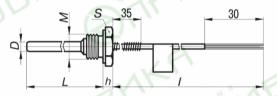


Рисунок А.3 – Конструктивное исполнение 054, 064 и 074

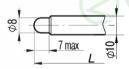


Рисунок А.4 – Конструктивное исполнение 084 (остальное см. рис. А.3)

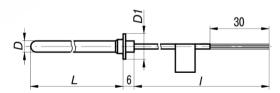


Рисунок А.5 – Конструктивное исполнение 094, 104 и 114

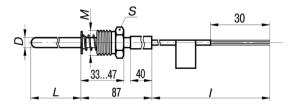


Рисунок А.6 – Конструктивное исполнение 124, 134 и 144

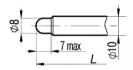


Рисунок А.7 – Конструктивное исполнение 154 (остальное см. рис. А.6)

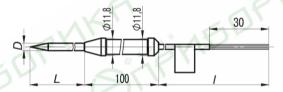


Рисунок А.8 – Конструктивное исполнение 174, 184 и 196

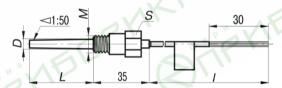


Рисунок А.9 – Конструктивное исполнение 204

Таблица А.1 – Конструктивные исполнения датчиков типа ДТПХ хх4

Тиолиции	таолица А.т – конструктивные исполнения датчиков типа д гти ддя						
Конструктивное исполнение	Рисунок	Параметры	Материал	Длина монтажной части <i>L</i> *, мм			
014		D=5 мм	латунь	20			
024	A.1	D=8 мм	сталь 12X18H10T	30			
034	A.2	D=5 мм, M=8x1 мм	латунь	20			
044	A.2	D=8 мм, M=12x1,5 мм	сталь 12X18H10T	30			
054		D=6 мм, M=16х1,5 мм**, S=22 мм, h= 9 мм	сталь 12X18H10T				
064	A.3	D=8 мм, M=20x1,5 мм**, S=27 мм, h= 8 мм		60, 80, 120, 160, 200, 250, 320,			
074		D=10 мм, M=20x1,5 мм**, S=27 мм, h= 8 мм	01	400, 500			
084	A.4	D=10 мм, M=20x1,5 мм**, S=27 мм, h= 8 мм	-05				
094		D=6 мм, D1=13 мм	0	60, 80, 120, 160,			
104	A.5	D=8 мм, D1=18 мм		200, 250, 320,			
114	5/1.0	D=10 мм, D1=18 мм		400, 500, 630, 800, 1000			
124		D=6 мм, M=16x1,5 мм**, S=17 мм		TEMK			
134	A.6	D=8 мм, M=20x1,5 мм**, S=22 мм	» " * V F	60, 80, 120, 160, 200, 250, 320,			
144	" °	D=10 мм, M=20x1,5 мм**, S=22 мм	181	400, 500			
154	A.7	D=10 мм, M=20x1,5 мм**, S=22 мм					
174		D=1,5 мм, D1=10 мм		60, 80, 100, 120,			
184	A.8	D=3 мм, D1=10 мм		160, 200, 250			
194		D=5 мм, D1=11,8 мм		100, 200, 230			
204	A.9	M=10x1 мм**, S=14 мм	латунь	40, 65			

Примечания:

 $^{^*}$ – Длина кабельного вывода \emph{I} и длина монтажной части \emph{L} выбираются при заказе.

^{** –} По спец. заказу возможно изготовление датчика с трубной резьбой.

Приложение Б. Конструктивные исполнения датчиков с коммутационной головкой

Габаритные размеры конструктивных исполнений для датчиков с коммутационной головкой приведены на рисунках Б.1 - Б.7 и в таблице Б.1.

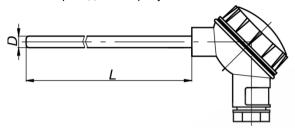


Рисунок Б.1 – Конструктивное исполнение 015 и 025

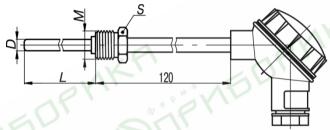


Рисунок Б.2 - Конструктивное исполнение 035 и 045

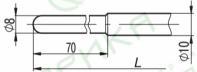


Рисунок Б.3 – Конструктивное исполнение 055 (остальное см. рисунок Б.2)

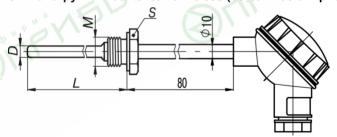


Рисунок Б.4 – Конструктивное исполнение 065, 075 и 085

Рисунок Б.5- Конструктивное исполнение 095

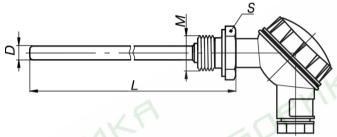


Рисунок Б.6- Конструктивное исполнение 105

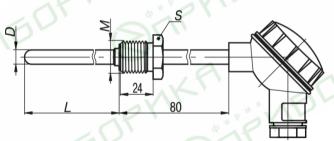


Рисунок Б.7 – Конструктивное исполнение 185 и 195 (с подвижным штуцером)

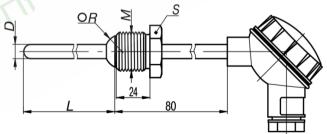


Рисунок Б.8 – Конструктивное исполнение 205 и 215 (с подвижным штуцером)

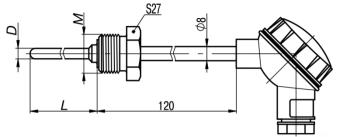


Рисунок Б.9 – Конструктивное исполнение 265 (с подвижным штуцером)

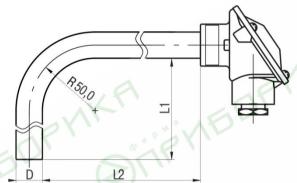


Рисунок Б.10 - Конструктивное исполнение 115

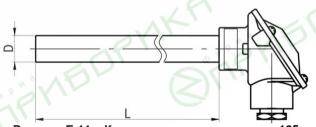


Рисунок Б.11 – Конструктивное исполнение 125

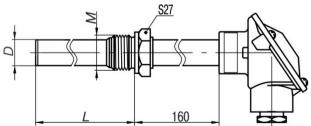


Рисунок Б.12 - Конструктивное исполнение 135

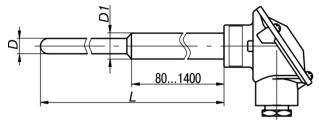


Рисунок Б.13 – Конструктивное исполнение 145

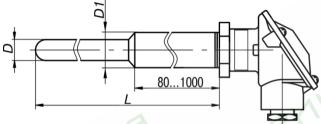


Рисунок Б.14 – Конструктивное исполнение 155

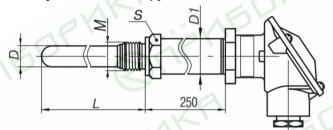


Рисунок Б.15 – Конструктивное исполнение 165

Таблица Б.1 – Конструктивные исполнения датчиков типа ДТПХ хх5

Конструктивное исполнение	Рисунок	Параметры	Материал защитной арматуры	Длина монтажной части L*, мм
015	Б.1	D=8 мм	сталь 12Х18Н10Т	60, 80, 100,
025		D=10 мм	сталь 12X18H10T	120, 160, 180, 200,
			или	250, 320, 400, 500,
			сталь 08X20H14C2	630, 800, 1000,
035	Б.2	D=8 мм,	сталь 12Х18Н10Т	1250, 1600, 2000
		М=20х1,5 мм**,		
045		S=22 мм D=10 мм,	сталь 12Х18Н10Т	-
045		D=10 мм, M=20x1,5 мм**,	Сталь 12×1011101 ИЛИ	
		S=22 MM	сталь 08X20H14C2	
055	Б.3	D=10 мм,	сталь 12X18H10T	80, 100,
000	2.0	M=20x1,5 мм**,	0.00.0 .20.00.00	120, 160, 180, 200,
		S=22 мм		250, 320, 400, 500,
				630, 800, 1000,
				1250, 1600, 2000
065	Б.4	D=8 мм,	сталь 12Х18Н10Т	60, 80, 100,
		М=20х1,5 мм**,		120, 160, 180, 200,
075		S=27 MM	40V40U40T	250, 320, 400, 500,
075		D=10 MM,	сталь 12Х18Н10Т	630, 800, 1000, 1250, 1600, 2000
	1	M=20x1,5 мм**, S=27 мм	или сталь 08X20H14C2	1230, 1000, 2000
085	Z. () '	D=10 MM,	сталь 12Х18Н10Т	-
003	0	M=27x2 мм**, S=32 мм	или	,
" b "		, , , , , , , , , , , , , , , , ,	сталь 08X20H14C2	1
095	Б.5	D=10 мм,	сталь 12X18H10T	
		М=20х1,5 мм**,		101
		S=22 MM		
105	Б.6	D=8 мм,		
		М=20х1,5 мм**,		
405	F 7	S=27 MM		00 400 400
185	Б.7	D=10 мм, M=22x1,5 мм**,		80, 100, 120, 160, 180,200, 250,
	O M O	S=27 MM		320, 400
195 🗞	OX	D=10 MM,		320, 400
100	11	M=27x2 мм**, S=27 мм		
205	Б.8	D=10 мм.		
		М=22х1,5 мм**,		
		S=27 мм, R=9,5 мм		
215		D=10 мм,		
		М=27х2 мм**,		
		S=32 MM,		
005	F 0	R=12 мм		00 400 400 400
265	Б.9	D=6 MM,		80, 100, 120, 160,
		M=22x1,5 мм**, S=27 мм		180, 200, 250, 320, 400, 500, 630, 800,
		J-ZI IVIIVI		1000

Окончание таблицы Б.1

Конструктивное	Рисунок Параметры		•	Длина монтажной	
исполнение	· noynen		арматуры	части L*, мм	
115***	Б.10	D=20 мм,	ДTПL	L1, L2: *****	
			сталь 12Х18Н10Т	250, 320, 400, 500,	
			(-200+600 °C)	630, 800, 1000,	
				1250, 1600	
			дтпк		
125***	Б.11	D=20 мм	сталь 12Х18Н10Т	250, 320, 400, 500,	
135***	Б.12	D=20 мм,	(-200+600 °C)	630, 800, 1000,	
		М=27х2 мм**		1250, 1600, 2000	
		S=32 мм	сталь 15Х25Т		
			(-200+1000 °C)		
			сталь ХН45Ю		
			(-200+1100 °C,		
			до 1200°С при работе в		
			кратковременном режиме	. 0	
145****	Б.13	D=12 мм, D1=20 мм	керамика МКРц	250, 320, 400, 500,	
155	Б.14	D=20 мм, D1=30 мм	(-200+1100 °C,	630, 800, 1000,	
165	Б.15	D=20 мм, D1=30 мм	1200 °С в	1250, 1600	
		M=27х2 мм**, S=32 мм	кратковременном		
		A 1/2	режиме)		

Примечания:

 $[\]dot{}^*$ – Длина кабельного вывода \emph{I} и длина монтажной части \emph{L} выбираются при заказе.

^{** –} По спец. заказу возможно изготовление датчика с трубной резьбой.

^{*** -} Рекомендуемый диаметр термоэлектродов 3,2 мм.

^{**** -} Диаметр термоэлектродов только 1,2 мм.

^{***** –} Для датчика в конструктивном исполнении 115 в условном обозначении длина монтажной части L указывается в формате L1/L2 (например, ДТПК 115-0312.250/1000, где L1=250мм, L2=1000 мм).

Приложение В. Конструктивные исполнения

коммутационных головок

Габаритные размеры коммутационных головок датчиков ДТП XX5 приведены на рисунках В.1 и В.2.

Примечание – Коммутационная головка металлическая, применяемая для датчиков ДТПХ XX5 в конструктивных исполнениях 115 - 165, представлена на рисунке В.З.

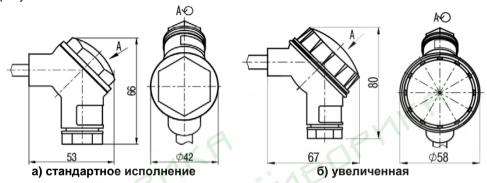


Рисунок В.1 – Коммутационная головка пластмассовая

Рисунок В.2 – Коммутационная головка металлическая

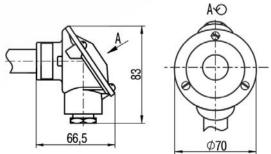


Рисунок В.3 – Коммутационная головка металлическая (стандартное исполнение) для конструктивных исполнений 115-165

Приложение Г. Конструктивные исполнения бескорпусных датчиков

Габаритные размеры конструктивных исполнений датчиков типа ДТПХ XX1приведены на рисунках Г.1 - Г.3 и в таблице Г.1.

Описание конструктивного исполнения высокотемпературного датчика ДТПS 021 приведено на рисунке Г.4 и в таблице Г.2.

трубка МКРц
Рисунок Г.3– Конструктивное исполнение 031

Таблица Г.1 – Конструктивные исполнения датчиков типа ДТПХ xx1

Конструктивное исполнение	Рисунок	Диаметр термо- электрода, мм	<i>D</i> , мм	<i>D1</i> ,	Тип изоляции	Длина термопары <i>L</i> *, м	Длина кабельного вывода <i>I</i> *, мм	
011	Г.1	0,5	2,0	1,8	нить			
		0,7	2,8	2,0	K11C6	1,5 5 10 15 20		
		1,2	4,0	2,8				
021	Г.2, а	0,5	46	35	.5 трубка			
		0,7	7,0	JJ			_	
	Г.2, б	1,2	6,4.	7,0	бусы		_	
	Г.2, в	3,2	1	2	бусы	30		
031	Г.3	0,5	3,5	1,8	трубка		EO 33/33/	
		0,7	7,0	2,0	МКРц/		по заказу – любая	
		1,2	7,0	2,8	бусы			

Примечание:

^{*} – Длина термопары L и длина термопарного кабеля I определяются заказчиком.

Рисунок Г.4 – Конструктивное исполнение 021.13 с изолированным рабочим

Рисунок Г.5 – Конструктивное исполнение 021.10 с неизолированным рабочим спаем

Таблица Г.2- Конструктивные исполнения датчиков типа ДТПS 021.19

Конструктивное исполнение	Рис.	Диаметр платинового электрода, мм	Диаметр платинородиевого электрода, мм	Внешний диаметр <i>D</i> , мм, не более	Длина термопары <i>L*</i> , м
021.19	Г.4	0,5 мм	0,4 мм	4,6	от 0,2 до 2
021.10	Γ.5	0,5 мм	0,4 мм	4,6	от 0,2 до 2

Примечание:

^{* –} Длина термопары **L** определяется заказчиком.

Лист регистрации изменений

	I		D				
Nº		Номера ли	стов (стр	Всего	Дата	l	
изменения	измен.	заменен.	новых	аннулир.	листов (стр.)	внесения	Подпись
							α
						$-\lambda \Lambda$	
						21,	
			/ * ` `				
		- ^ \					
		OKI		" " A			
			to W		h		
		7					
M 3				*			
" " P							A K
8							JAH.
-) / - / -				150			
				K			
			\sim	1	2/ 8	167	
					0 11 0		

Центральный офис: 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45 www.owen.ru

Отдел сбыта: sales@owen.ru

Группа тех. поддержки: support@owen.ru

Рег. № 1847 Зак. №